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In the present study, we investigate the migration of DNA molecules through a microchannel using a series
of electric traps controlled by an ac electric field. We describe the motion of DNA based on Brownian
dynamics simulations of a bead-spring chain. The DNA chain captured by an electric field escapes due to
thermal fluctuation. The mobility of the DNA chain was determined to depend on the chain length, the mobility
of which sharply increases when the length of the chain exceeds a critical value that is strongly affected by the
amplitude of the applied ac field. Thus we can optimize the separation selectivity of the channel for DNA
molecules that is to be separated, without changing the structure of the channel. In addition, we present a
phenomenological description for the relationship between the critical chain length and the strength of binding
electric field.
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I. INTRODUCTION

Gel electrophoresis is commonly used in biological sci-
ence to separate DNA molecules according to their size.
Longer DNA molecules have a lower electrophoretic mobil-
ity in the random environment of a gel, and therefore sepa-
ration could be performed using a dc electric field. However,
gel electrophoresis has a lower efficiency for DNA molecules
longer than about 20k base pairs �bp�, beyond which the
length dependence of the mobility gradually disappears. In
addition, pulsed-field electrophoresis has been widely used
for separation of longer DNA molecules. This method also
has a limit, with respect to both speed and size, with an
upper limit of approximately 10 Mbp.

On the other hand, separation devices are required to be
incorporated into a millimeter-sized chip with the develop-
ment of highly integrated bioanalysis systems, micro-total
analysis systems ��-TAS� or lab-on-a-chip devices �1,2�.
However, introducing a gel into microchannels is a difficult
problem due to the high viscosity involved. Furthermore, the
gel-free system has an advantage in giving a well-defined
microstructure for DNA separation devices. Therefore re-
cently proposed gel-free separation techniques �3–8� have
received considerable attention. Ajdari and Prost proposed a
gel-free separation technique that uses free-flow electro-
phoresis together with a series of trapping by induced-dipole
forces �3�. Based on their theoretical analysis they argued
that, in their model, the mobility of a DNA chain monotoni-
cally decreases with size. More recently, Han and Craighead
investigated a designed microchannel, which has alternating
thin and thick regions �4–6�, and found that longer DNA
molecules were trapped in thick regions for a shorter time.

Therefore shorter DNA molecules have lower mobilities.
This has been confirmed both theoretically �9� and numeri-
cally �10�. Note that, as mentioned in Ref. �4�, the free en-
ergy landscape of the above two systems are quite similar,
the relation between mobility and DNA size shows a clear
contrast. This discrepancy may originate from the fact that,
in order to consider the escape of DNA chains from an elec-
trode, Ajdari and Prost considered the chain as a point par-
ticle. In contrast, as observed experimentally, the deforma-
tion of DNA is important when a DNA molecule escapes
from a thick region �4�.

In the present paper, we revisit the Ajdari and Prost’s
model and investigate the mobility of DNA chains along the
channel, taking the deformation of the DNA molecule into
account. Our simulation verifies that longer DNA is trapped
for a shorter time and the mobility increases suddenly when
the chain exceeds a certain critical length. Furthermore, we
found that this critical chain length is strongly affected by the
voltage applied across the electrodes. Therefore we are able
to adjust the regime in which the device well separates DNA
chains without changing the structure of the channel. These
numerical insights will help us to design practical separation
devices in the future.

The present paper is organized as follows. In Sec. II, the
proposed separation device and the simulation model are de-
scribed. In Sec. III A, the results of our simulation are dis-
cussed, and in Sec. III B, a scaling analysis for the mobility
of DNA chains is presented, the result of which are com-
pared with the simulation results. In Sec. IV, we summarize
the results obtained in the present study.

II. SIMULATION MODEL

For the present simulation, we adopt a bead-spring model,
which represents a DNA molecule as N beads or monomers*Electronic address: nagahiro@miyagi-ct.ac.jp
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of diameter �. Neighboring beads are connected by harmonic
springs with constant k as follows:

Vsp�rn�
kBT

=
1

2
k� rn

�
�2

, �1�

where Vsp is the potential energy of the spring, rn is the
distance between neighboring beads, kB is the Boltzmann
constant, and T is the temperature. In order to take the ex-
cluded volume effect into account, all beads are assumed to
interact with each other through the Weeks-Chandler-
Andersen �WCA� potential,
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where r is the interbead distance.
Let us denote the thermal fluctuation force acting on the

ith bead as �i�t�. We assume that the viscous drag is propor-
tional to the bead velocity with friction constant �. A general
theorem from statistical mechanics relates the random force
and the friction constant as

	�i�t�� j�t��
 = 2kBT��ijI��t − t�� , �3�

where I is the 3�3 identity tensor, �ij is the Kronecker delta,
and ��t− t�� is the delta function. The random force in our
simulation is set so as to satisfy this relation in a discretized
manner �11�.

Schematic diagrams of the xz and xy planes of the channel
are shown in Fig. 1. We simulate the motion of bead-spring
chains inside this channel, the cross section of which is a
square having a side length of d. For the x direction, the
periodic boundary condition with distance L=9d is assumed
both for the electric field and the chain motion, unless men-
tioned specifically. The beads are assumed not to adhere to
the channel wall. The WCA potential is also applied between

the beads and the wall. In the corners of the channel, the two
repulsive forces from different directions are summed.

Each bead carries an electric charge of qnet. For strongly
charged polyelectrolytes such as DNA molecules, the charge
qnet should be regarded as the reduced charge due to coun-
terion condensation. According to the Oosawa-Manning
theory �12,13�, the charge of DNA, immersed in monovalent
salt, is neutralized by 76%. Hence for the beads representing
m base pairs, we set qnet�2.0�1.0−0.76�me−=0.48me−,
where e− is the elementary electric charge.

Ajdari and Prost theoretically considered the one-
dimensional motion of a DNA molecule pulled by an electric
field. In their model, a series of dielectric traps is placed by
applying ac electric fields perpendicular to the direction of
DNA migration. It is assumed that the frequency of the ac
field is high enough that the molecule feels a static ratchet-
like potential. In the present simulation, we set “parallel-
plate condensers” along the channel, as shown in Fig. 1�a�,
and apply a dc voltage across them. We also apply a uniform
electric field E0 in the x direction, which drives the DNA
chain along the channel. The potential � inside the channel is
obtained by solving the Laplace equation �2�=0 with the
boundary element method under the boundary conditions of
�= ±�U on the electrodes and s ·��=0 on the opposite
wall, where s is the surface normal. The potential � obtained
is approximately equivalent to that of Ajdari and Prost’s
channel in the x direction �see Fig. 1�b��. The electric force
acting on a bead is given as fi

el=qnet�E0−���ri�, where ri is
the position of the ith bead. Neglecting the inertia of the
beads, we write the equation of motion for the ith bead as
follows:

�ṙi = fi
int + fi

el + �i, �4�

where fi
int represents the sum of the bead-bead and bead-wall

interactions.
The natural units of our simulation are defined as follows.

We use � as the unit length, kBT as the unit energy, E
�kBT /�qnet as the unit electric field strength, and 	
=��2 /kBT as the unit time. The channel size is d=20�. The
spring constant k is set to 102, a condition in which the
equilibrium length of the springs is 0.85� and no chain
crossing occurs �14�. We integrated Eq. �4� with second-
order stochastic Runge-Kutta algorithms �15� using a time
step of �t=1.75�10−4	. The random force is represented as
�i= �kBT /���6	 /�t�i, where �i is a random vector that has
independent components uniformly distributed on �−1,1�.
We used Mersenne twister algorithms �16� to generate �i.
The initial conformation of a chain is set by placing beads
with an interval of � on a trajectory obtained from a three-
dimensional self-avoiding random walk.

Finally, we describe how the parameters of the proposed
model can be related to those obtained experimentally. We
first consider �=50 nm, the order of the persistence length of
DNA �17,18�, whereby one bead corresponds to 167 base
pairs. The electric field E=65 V/cm under the condition of
T=300 K. Using the Stokes’ formula �=6
�� with � as the
viscosity of water, the time scale is estimated as 	=5.1
�10−4 sec.

FIG. 1. �a� Schematic diagrams of a channel with electric traps
in the xy and yz planes. The electrodes are square in shape and are
placed along the channel at intervals of 3d. �b� The contour lines of
the electric potential � at the plane y=d /2.

NAGAHIRO, KAWANO, AND KOTERA PHYSICAL REVIEW E 75, 011902 �2007�

011902-2



The present model neglects the effect of counterions and
hydrodynamic interactions. The adequacy of these simplifi-
cations was precisely discussed in Ref. �14�. This simulation
model has successfully described the migration of DNA in
gel �19,20� and in a channel with entropic traps �10,14�.
Therefore the model is thought to reproduce the experimen-
tal results with a few adjustable parameters.

III. RESULTS AND DISCUSSION

A. Migration of DNA chain

In this subsection, we describe the results of the present
simulation for DNA migration in the microchannel. Here, we
set E0=Ex̂, where x̂ is the unit vector parallel to the x axis,
and describe the applied voltage across each electrode with
the dimensionless parameter c=2�U /Ed. The number of
beads ranges from N=5 to N=103, which corresponds to
DNA molecules from 0.8 to 170 kbp. We focus on the di-
mensionless mobility of a single isolated chain �̃=�E� /	 as
a function of c and N. Figure 2 shows the snapshots of the
present simulation, in which a chain of N=80 escapes from
an electric trap under the conditions of c=1.0 and 1.2. Larger
values of c indicate stronger trapping by the transverse elec-
tric field. In this case, a 20% increase of c roughly doubles
the trapping lifetime of the DNA chain. The DNA chain is
stretched during the migration to the next trap. The same
behavior is also observed experimentally in the escape of
DNA molecules from entropic traps �4,5�. Figure 3 shows the
trajectories for chains of length N=20,30, . . . ,160 at c=1.0.
The flat regions of the trajectories indicate the trapping of
chains on an electrode. Shorter chains tend to be trapped for
longer times and longer chains �N�80� are only slightly
affected by the traps. To evaluate mobility, we fit the trajec-
tory of a chain that has passed through a trap ten times using
a linear function. This slope corresponds to the dimension-
less mobility �̃.

We show the relationship between �̃ and N in Fig. 4. Each
plot is the average of ten trials. For c=0.8, the mobility �̃

increases only gradually, and for c�1.0, a sharp increase in
mobility appears at a certain N. In the case of c�1.2, short
chains of less than N�102 are permanently trapped on an
electrode and the resultant mobility is zero. The dispersion of
the average tends to be large when the mobility shows the
sudden increase. For the migration of long chains N�800
under the condition of c=1.5 and 1.7, the mobility again
rises. This is because the chain is compressed by the side
wall at y=0 and d, and stretched in the x direction two or
three times longer than the space between adjacent electrodes
and thus the trapping by electrodes would be less efficient. In
this regime, obtaining a theoretical understanding of the mo-
bility is not easy, and so will be investigated in future stud-
ies. In the following subsection, we consider the dynamics of
DNA chains trapped by a single electrode.

B. Critical chain length Nc

The microchannel was efficient at separating DNA mol-
ecules in regions where the mobility �̃ depends strongly on
chain length. Let us denote the critical chain length as Nc, at
which the mobility increases suddenly. Figure 4 indicates
that, by varying c, we can optimize the microchannel for the
DNA molecules we would like to separate. In the following,
we therefore consider the relationship between Nc and c.

Let us denote the trapping lifetime of DNA chains as
	t�c ,N�. The dimensionless mobility can then be written as
follows �4�:

�̃ =
t0

t0 + 	t
, �5�

where t0 is the transit time between two adjacent electrodes.
Figure 5�a� shows a schematic diagram of a bead-spring
chain trapped on an electrode, in which n beads of the chain
have overcome an electric barrier �U. To calculate the trap-
ping lifetime 	t, we roughly estimate the change in total free
energy �F�n� due to the escape of n beads. When beads are
trapped, their motion is restricted within a distance � from an
electrode in z direction. Thus we can characterize the N−n

FIG. 2. A DNA chain of N=80 that escapes from an electric trap
under the conditions of �a� c=1.0 and �b� c=1.2. The gray rectan-
gular areas indicate electrodes.

FIG. 3. Trajectories of DNA chains of N=20,30, . . . ,160 with
c=1.0. Only the x component of the center of mass is plotted.
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beads on electrodes as having two typical lengths �21,22�:

rg � ��N − n�r, �6�

lg � ��N − n�l. �7�

Unfortunately, we cannot analytically calculate the expo-
nents r and l. However, the present simulation evaluates
r�0.44 and l�0.37. Each bead experiences the ratchetlike
potential V�x�, as shown in Fig. 5�b�, where we set V�0�=0.
Near the right hand edge of the electrode, V�x� can be written
as

V�x� = � − Ex �x � 0�
− Ex + �U �0 � x� .

� �8�

To roughly estimate the electric energy of the DNA chains,
we regard the chain as a one-dimensional system along the x
axis, and adopt a continuum approximation. The number
density of beads projected on the x axis is approximately
given by

��x� = �Alg/�2, �− rg � x � 0� ,

1/� , �0 � x � n�� ,

0, otherwise,
�

where A is a dimensionless constant. Then, the total electric
potential energy of the chain U�n� could be written as fol-
lows:

U�n� � �
−rg

n�

qnet��x�V�x�dx

= Aqnet

lgrg
2E

2�2 + nqnet�U − �qnetE
n2

2

=
qnet�E

2
�A�N − n�� +

cd

�
n − n2� , �9�

where ��2r+l�1.25. Because the decrease in entropy
due to the stretch of the beads is proportional to nkBT, the
total free energy difference �F�n� is given by

�F�n�
kBT

�
U�n� − U�0�

kBT
+ n

= A��N − n�� − N� +
cd

2�
n −

n2

2
+ n . �10�

In Fig. 6, we plot �F�n� as a function of n for N=100. For
c�1, �F�n� increases at small n and reaches a peak at
n=n*, whereas for c=0.5, �F�n� decreases monotonically
with n. Let �Fmax be the maximum of �F�n�. Trapping oc-
curs when �d��F� /dn�n=0�0, and 	t is given by

	t � exp��Fmax/kBT� . �11�

We can calculate �Fmax by solving the following equation:

� d

dn

�F�n�
kBT

�
n=n*

= − A�N�−1�1 −
n*

N
��−1

+
cd

2�
− n* + 1 = 0.

�12�

Here, we assume that the number of beads N is much larger
than n* and neglect the terms of order N�−2 and higher. We
then obtain

FIG. 4. Mobility �̃ of DNA chains for c=0.8,1.0, . . . ,1.7 as a
function of N. Each plot is the average and the error bars are drawn
due to the standard deviations of ten trials.

FIG. 5. �a� Schematic diagram of a bead-spring chain escaping
from a trap. �b� Electric potential energy experienced by a bead.

FIG. 6. Free energy difference �F�n� as a function of n obtained
from Eq. �10� with A=3.4.

NAGAHIRO, KAWANO, AND KOTERA PHYSICAL REVIEW E 75, 011902 �2007�

011902-4



n* �
cd

2�
+ 1 − A�N�−1. �13�

A sharp increase in �̃ appears when the free energy barrier is
�Fmax=0. From Fig. 5�b�, this condition occurs only when
n*=0. We therefore obtain

Nc � � cd/2 + �

��A
�1/��−1�

,
1

� − 1
= 4.0 �14�

with A as a fitting parameter. In order to estimate the value of
Nc from Fig. 4, we consider linearly interpolated functions
�̃in�N�, which is shown by the solid lines on the figure. Let
Ni�i=1,2 ,3 , . . . � be the point of interpolation. If �̃in�N� has
the maximum slope in �Ni ,Ni+1�, we regard �Ni+Ni+1� /2 as
the critical length. Figure 7 shows that Eq. �14� is in good
agreement with the present simulation with one adjustable
parameter A=3.4. For c�1, Eq. �14� overestimates the simu-

lation data because, in this region, the assumption n*�N is
no longer valid.

IV. CONCLUDING REMARKS

We have presented Brownian dynamics simulations of
DNA migration in channels with electric trappings. The
chain length dependence of mobility observed in the present
simulation does not agree with the theory presented by Aj-
dari and Prost �3�. This discrepancy is concluded to be due to
their simplification, in which DNA molecules escape from
electric traps as point particles, because the numerical simu-
lations of the present study demonstrated that the deforma-
tion of DNA chain is important when it escapes from the
traps. The critical chain length Nc is strongly affected by the
voltage applied across the electrodes. Based on a phenom-
enological discussion, we found a simple scaling relationship
between Nc and the parameters of the present system, which
agrees with the simulations.

The main advantage of the present channel is that one can
control the critical chain length Nc by changing the applied
voltage of the condensers. However, the mobility of DNA
decreases with the increase of the parameter c as we see from
the Fig. 4. This implies that the separation speed becomes
lower when we apply a higher voltage to the condensers,
which is required to separate the relatively long DNA chains.
This drawback should be improved to design practical sepa-
ration devices.
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